Association Rule Mining using Self Adaptive Particle Swarm Optimization
نویسندگان
چکیده
Particle swarm optimization (PSO) algorithm is a simple and powerful population based stochastic search algorithm for solving optimization problems in the continuous search domain. However, the general PSO is more likely to get stuck at a local optimum and thereby leading to premature convergence when solving practical problems. One solution to avoid premature convergence is adjusting the control parameters, inertia weight and acceleration coefficients. This paper proposes two adaptive mechanisms for adjusting the inertia weights namely self adaptive PSO1 (SAPSO1) and self adaptive PSO2 (SAPSO2) for mining association rules. The accuracy of the mined rules by these two algorithms when compared to weighted PSO shows that the self adaptive PSO produces better results when compared to weighted PSO.
منابع مشابه
An Evolutionary Quantum Behaved Particle Swarm Optimization for Mining Association Rules
In data mining, association rule mining is a popular and well researched method for discovering interesting relations between variables in large databases, which are meaningful to the users and can generate strong rules on the basis of these frequent patterns, which are helpful in decision support system. Quantum Particle Swarm Optimization (QPSO) is one of the several methods for mining associ...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملParticle swarm Optimization Based Association Rule Mining
Association rule mining is one of the widely using and simple concepts to find the frequent item sets from large number of datasets. While generating frequent item sets from a large dataset using association rule mining is not so efficient. This can be improved by using particle swarm optimization algorithm (PSO). PSO algorithm is population based evolutionary heuristic search methods used for ...
متن کاملAssociation Rules Optimization using Particle Swarm Optimization Algorithm with Mutation
In data mining, Association rule mining is one of the popular and simple method to find the frequent item sets from a large dataset. While generating frequent item sets from a large dataset using association rule mining, computer takes too much time. This can be improved by using particle swarm optimization algorithm (PSO). PSO algorithm is population based heuristic search technique used for s...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کامل